CYCLIZATION OF TERPENE ALCOHOLS AND RELATED POLYENOLS BY BENZENESELENENYL TRIFLATE

Shizuaki Murata* and Toshiyasu Suzuki1

Department of Chemistry, College of General Education, Nagoya University, Chikusa, Nagoya 464-01 Japan

Summary: Electrophilic cyclization of dienols and trienols, such as homogeraniol, homonerol, and farnesol, by benzeneselenenyl triflate proceeds with carbon-carbon bond formation to afford mono-, di-, and tricyclic compounds.

Biomimetic cyclization of terpenoids and related polyenols is an important stereo controlled procedure of polycyclic system², and usual organoselenium reagents, for example benzeneselenenyl chloride and *N*-phenylselenophthalimide have been employed as effective C=C bond activating agents in this field.³ However, these reagents require subsequent strong acidic conditions to accomplish the cyclization of polyenols to give multi-cycles.⁴ Described herein is one-step cyclization of acyclic terpene alcohols and derivatives by benzeneselenenyl triflate (PhSeOTf, 1).⁵

Reaction of homogeraniol (2) with one equivalent of 1 in dichloromethane at 0 $^{\circ}$ C (condition A) gave bicyclic ether 3 (49% yield) as an exclusive product. Homonerol (4) reacted with 1 in the same condition to afford 3 and monocyclic alcohol 5 in 42% and 12% yields, respectively. Their homologues 6 and 9 were similarly cyclized in the condition A to give mixtures of bi- and monocyclic products 7 and 8. In these cases, formation of cis fused products was not detected. Cyclization of *E*,*E*-farnesol (10) and its homologue 12 in

 $Tf = CF_3SO_2$

substrate	condition	product (yield/%)	
2	A	3 (49)	
4	A	3 (42)	5 (12)
¢€°"		PhSe H (30)	PhSe (29)
б	A	7 (17)	8 (21)
	A	PhSe H (9)	
	A -	$H_{\text{PhSe}} \xrightarrow{H_{\text{H}}} H_{\text{H}}^{\text{H}} (7)$	PhSe H (25)
2	B	PhSe (44) trans-15	
4	B	Phse (30) c/s-15	trans-15 (6)
4	C	cis-15 (33)	trans-15 (5)
он 16	В	PhSe (36)	

Table I. Cyclization of Polyenols by Benzeneselenenyl Triflate (1)

the condition A proceeded in low yields to give 11 and a mixture of 13 and 14, respectively. However, geraniol, nerol, linalool, and nerolidol did not give corresponding cyclized products in the condition A. Cyclization of 2 and 4 by 1 in dichloromethane at 0 °C in the presence of equimolar amount of pyridine (condition B) or in dichloromethane at -78 °C (condition C) gave stereoselectively *trans*- and *cis*-15, which were formed by the usual intramolecular oxyselenylation process, 4f, 4g, 4i, 5 respectively. Linalool (16) gave the oxyselenylation product 17 without carbon-carbon bond formation in the condition B. Results are summarized in Table I.

Electrophilic cyclization of 2 by an organoselenium reagent proceeds through intermediates *trans*-18 and protonated *trans*-15 (*trans*-15-H⁺) to afford *trans*-15, which are not changed furthermore in the condition B or C. Under reinforced condition A acid catalyzed second cyclization of *trans*-15 to 3 carries out through the bicyclic intermediate *exo*-19, since the condition A liberates one equivalent of trifluoromethanesulfonic acid throughout the reaction.⁶ Related strong acid catalyzed cyclizations were reported.^{4f,4g,4i} When the Z-isomer 4 was employed to these reaction, the initially produced intermediate *cis*-18 was converted to sterically unfavorable *endo*-19. Here, C-Se bond cleavage of *endo*-19 occurred predominantly to give a tertiary carbocation intermediate which was transformable to 5 by deprotonation. Some part of *cis*-18 was isomerized to the more stable *trans*-18 and yielded 3. Under the condition B, since deprotonation of *trans*- and *cis*-15-H⁺ proceeds immediately by pyridine, *t* these intermediates were quenched to give oxyselenylation products *trans*- 15, respectively.

Following examples are representative. Condition A: To a solution of 1 (1.5 mmol), prepared *in situ* from PhSeCl (287 mg) and AgOTf (386 mg),⁷ in CH₂Cl₂ (7 ml) was added a solution of 2 (246 mg, 1.5 mmol) in CH₂Cl₂ (2 ml) at 0 °C. After 15 min, 5% aqNaHCO₃ was added and this was extracted 3 times by CH₂Cl₂ (25 ml). The combined organic solution was dried over anhydrous K₂CO₃ and concentrated *in vacuo*. Column chromatography on silica gel eluting with 5% ethyl acetate in petroleum ether gave 3 (230 mg, 49% yield) as colorless oil. Condition B: To a mixture of 1 (1.5 mmol) and pyridine (0.12 ml) in CH₂Cl₂ (7 ml) was added 2 (236 mg, 1.4 mmol) at 0 °C. Similar work-up and purification gave *trans*-15 (200 mg, 44%) as colorless oil.

Authors are grateful to professors Ryoji Noyori and Kiyoyuki Yamada for NMR facilities. This research is partly supported by Grant-in-Aids for Scientific Research, No. 63740283 and 01740304, from Ministry of Education, Science and Culture, Japan. The author, S. M., acknowledges to The Fujisawa Foundation for financial supply.

References and Notes

- 1. Recent address: Dept. of Chemistry, University of California, Santa Barbara, CA 93106 USA.
- Reviews: (a) van Tamelen, E. E. Acc. Chem. Res. 1975, 8, 152-158; (b) Johnson, W. S. Angew. Chem., Int. Ed. Engl., 1976, 15, 9-17; (c) Nishizawa, M. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier, 1988; Vol. 1, pp 655-676.
- (a) Nicolaou, K. C. Tetrahedron, 1981, 37, 4097-4109; (b) Paulmier, C. Selenium Reagents and Intermediates in Organic Synthesis, Pergamon, 1986, pp 185-255; (c) Back, T. G. In Organoselenium Chemistry, Liotta, D. Ed., Wiley, 1987, Chap. 1.
- 4. (a) Clive, D. L. J.; Chittattu, G.; Wong, C. K. J. Chem. Soc., Chem. Commun., 1978, 441-442;
 (b) Kametani, T.; Suzuki, K.; Kurobe, H.; Nemoto, H. J. Chem. Soc., Chem. Commun., 1980, 762-763;
 (c) Kametani, T.; Kurobe, H.; Nemoto, H. J. Chem. Soc., Chem. Commun., 1980, 762-763;
 (d) Jackson, W. P.; Ley, S. V.; Morton, J. A. J. Chem. Soc., Chem. Commun., 1980, 1028-1029;
 (e) Jackson, W. P.; Ley, S. V.; Whittle, A. J. J. Chem. Soc., Chem. Commun., 1980, 1173-1174;
 (f) Rouessac, A.; Rouessac, F.; Zamarlik, H. Tetrahedron Lett., 1981, 22, 2641-2642; (g) Rouessac, F.;
 Zamarlik, H. Tetrahedron Lett., 1981, 22, 2643-2646; (h) Kametani, T.; Fukumoto, K.; Kurobe, H.;
 Nemoto, H. Tetrahedron Lett., 1981, 22, 3653-3656; (i) Rouessac, A.; Rouessac, F. Tetrahedron, 1981, 37, 4165-4170; (j) Kametani, T.; Suzuki, K.; Kurobe, H.; Nemoto, H. Chem. Pharm. Bull. 1981, 29, 105-109; (k) Kametani, T.; Kurobe, H.; Nemoto, H. J. Chem. Soc. Chem. Commun., 1982, 1251-1252; (m) Ley, S. V.; Murray, P. J. J. Chem. Soc., Chem. Commun., 1982, 1252-1253; (n) Kametani, T.; Kurobe, H.; Nemoto, H.; Fukumoto, K. J. Chem. Soc., Perkin Trans. 1, 1982, 1085-1087.
- (a) Murata, S.; Suzuki, T. Chem. Lett., 1987, 849-852; (b) Murata, S.; Suzuki, T. Tetrahedron Lett. 1987, 28, 4297-4298; (c) Murata, S.; Suzuki, T. Tetrahedron Lett., 1987, 28, 4415-4416.
- Benzeneselenenyl iodide affords the similar cyclization without acidic additives. See: Toshimitsu, A.; Uemura, S.; Okano, M. J. Chem. Soc., Chem. Commun., 1982, 87-89.

(Received in Japan 18 July 1990)